
© Copyright Ian D. Romanick 2009, 2010

25-May-2010

VGP351 – Week 8.1

⇨ Agenda:
 Quiz #3
 Sampling

 Theory
 Application to texture mapping

 Simple filtering

 Mipmapping

 Anisotropic filtering

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Sampling

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Sampling

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Sampling

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Sampling

This artifact caused by
undersampling is called
aliasing.

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Sampling

z

Sampling at the same
rate but different
positions leads to a very
different reconstructed
signal.

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Avoiding Aliasing

⇨ How?

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Avoiding Aliasing

⇨ How?
⇨ Sample at a higher rate

 What sample rate is sufficient?
 More samples means more data, and that comes at a

cost

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Nyquist-Shannon Sampling Theorem

⇨ If f is the highest frequency element in a signal,
the signal must be sampled at a rate of at least
2f in order to be accurately reconstructed

 If the sample rate is f
s
 then we call f

s
/2 the critical

frequency or the Nyquist frequency
 Any elements in the signal with frequency higher than

the critical frequency will alias

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Avoiding Aliasing

⇨ If having frequencies above the critical frequency
causes aliasing, how can we eliminate the
aliasing?

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Avoiding Aliasing

⇨ If having frequencies above the critical frequency
causes aliasing, how can we eliminate the
aliasing?

 Remove elements above the critical frequency!
 This is done using a low-pass filter

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Resampling

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Resampling

Nearest neighbor sampling
makes the data “crawl” by
just biasing the sample
positions.

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Resampling

Using a linear combination
of the two nearest samples
provides a much better
result.

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Texture Mapping

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Magnification

⇨ When a single texel is mapped to multiple
fragments, the texture is magnified

⇨ What happens when the location sampled from
the texture lies between texels?

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Magnification

⇨ When a single texel is mapped to multiple
fragments, the texture is magnified

⇨ What happens when the location sampled from
the texture lies between texels?

 Nearest neighbor sample
 Linear sample
 Cubic convolution

 Rarely implemented in hardware, but you could write a
shader to do it!

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Minification

⇨ When a single fragment covers multiple texels,
the texture is minimized

 This is where texture aliasing can occur

⇨ What to do?

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Minification

⇨ When a single fragment covers multiple texels,
the texture is minimized

 This is where texture aliasing can occur

⇨ What to do?
 In a perfect world, sample and filter all of the covered

texels
 Since an entire 1024×1024 texture could be

minimized to a single fragment, this is impractical

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Minification

⇨ Nearest neighbor sampling
 Most likely to have aliasing

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Minification

⇨ Linear filtering of nearest neighbors
 In 2D this is called bilinear filtering
 Better results because we're effectively doubling our

sample rate
 We also increase the memory bandwidth requirements by 2n

 At some point the texture will be minimized enough
that the sample rate will still be too low to prevent
aliasing

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmapping

⇨ Create multiple pre-filtered, down-sampled
versions of the “base” texture

 Down-sampled textures are called mipmaps
 The collection of mipmaps for a particular base

texture is called its mipmap stack
 From Latin “multum in pavro” for “many things in one

place”

⇨ As the texel area covered by a fragment
increases, use a smaller mipmap

 In smaller mipmaps, each texel represents more
samples from the base texture

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Example Mipmap Stack

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmapping

⇨ What's the trade-off?

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmapping

⇨ What's the trade-off?
 Memory size versus memory bandwidth
 What is the increase in size for a 2D texture?

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmapping

⇨ What's the trade-off?
 Memory size versus memory bandwidth
 What is the increase in size for a 2D texture?

1

22
1

42
1

82...
1

22n≈
1
3

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmapping

⇨ LOD will be used
where the outlined
area is a single texel

 No aliasing, but lots of
unneeded data is
filtered in

 Results in images that
are too blurry or over-
filtered

Sampled area

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmapping

⇨ Can partially fix the
oversampling by
taking multiple
samples from the next
higher LOD

 This is a bi-linear filter
of the mipmap

 Can extend further by
filtering between LODs

Sampled area

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmapping

⇨ For this case, mipmap
filtering will either
oversample or
undersample

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Improved Filtering

⇨ All of these filter
modes assume that
the sample region is
isotropic

 Isotropy is the property
of being uniform in all
directions

 We clearly can have
ideal sample regions
that are anisotropic

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Improved Filtering

⇨ An anisotropic filter
might sample these
10 positions in the
appropriate mipmap

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Improved Filtering

⇨ An anisotropic filter
might sample these
27 positions in the
appropriate mipmap

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Improved Filtering

⇨ An anisotropic filter
might sample these
27 positions in the
appropriate mipmap

 The red boxes show
the regions where over-
filtering would occur
with only 10 samples

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Setting Filter Modes

⇨ OpenGL has a name for each each of these filter
modes:

 GL_NEAREST – Point sampling

 GL_LINEAR – Bi-linear in 2D

 GL_NEAREST_MIPMAP_NEAREST – Point-sampling from
mipmap

 GL_LINEAR_MIPMAP_NEAREST – Linear sampling from one
mipmap

 GL_NEAREST_MIPMAP_LINEAR – Linear blend of two point-
sampled mipmaps

 GL_LINEAR_MIPMAP_LINEAR – Linear blend of two bi-linear
sampled mipmaps. Also known as tri-linear filtering in 2D

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Setting Filter Modes

⇨ Set texture filter modes with:
void glTexParameteri(GLenum target,
 GLenum pname, GLint param);

 pname is either GL_TEXTURE_MAG_FILTER or
GL_TEXTURE_MIN_FILTER

 param is one of the modes from the previous page

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Setting Filter Modes

⇨ Texture filter anisotropy is controlled by setting
GL_TEXTURE_MAX_ANISOTROPY_EXT

 Maximum amount of anisotropy is queried by
GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT to
glGetIntegerv

 Requires that the extension
GL_EXT_texture_filter_anisotropic be
available

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Setting Mipmaps

⇨ Mipmap is selected with the level parameter to
the glTexImage functions:
void glTexImage1D(GLenum target, GLint level,
 GLint internalFormat, GLsizei width,
 GLint border, GLenum format, GLenum type,
 const GLvoid *pixels);

 Zero is the “base” level, 1 is ½ size, 2 is ¼ size, etc.
 Textures that use mipmap filtering must be mipmap

complete
 All mipmaps down to 1×1 that might be used must be

specified

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmap Generation

⇨ OpenGL can automatically generate the full set
of mipmaps each time the base level is modified

 Set GL_GENERATE_MIPMAP to GL_TRUE
 This causes the mipmap stack to be regenerated if

even one texel is modified in the base level!

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Mipmap Generation

⇨ Later versions of GL add a different mechanism
void GenerateMipmapEXT(GLenum target);

 Generates mipmaps from base level to max level
 Function only available if

GL_EXT_framebuffer_object is supported
 Drop “EXT” from the name if OpenGL 3.0 or

GL_ARB_framebuffer_object is supported

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

LoD Clamping

⇨ Used mipmaps can be restricted to a subset of
the possible range

 GL_TEXTURE_BASE_LEVEL specifies the base level.
The default is zero.

 GL_TEXTURE_MAX_LEVEL specifies the highest level
(smallest mipmap / lowest LoD) that will be used.

 These settings also affect automatic mipmap
generation

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Next week...

⇨ Texture mapping part 3
 Environment mapping
 Projective texturing
 Texture atlases
 Texture compression

© Copyright Ian D. Romanick 2009, 2010

25-May-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

